A Cost Function for Robust Estimation of PCA

نویسندگان

  • Chuan Wang
  • Hsiao-Chun Wu
  • Jose C. Principe
چکیده

It is well known that Principal Components Analysis (PCA) is optimal in the sense of Mean Square Error (MSE). However, the estimation based on MSE is sensitive to noise or outliers, therefore, it is not a robust estimator. In order to get a robust estimation, absolute error criterion ( norm) could be used, but it is not differentiable at the origin point; and minimax criterion ( norm) could be also applied, but only for batch learning. In this paper, a cost function is proposed for robust estimation of the principal components of random variables. This cost function is rooted in the M-estimators in robust statistics. It has the form . It is easy to verify that this function is an even, nonnegative, and differentiable at any value t. Hence, it overcomes the drawback of the discontinuity of the M-estimators. We derived an on-line adaptation rule for both the weights and the slope of the cost function in a linear network. With the adjustable , the relative position between near-linearity and the saturation can be adapted based on the given random data. Simulation results showed that the representation error of PCA is much more smoothed using the new cost function than that of the original PCA with MSE.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Robust Distributed Estimation Algorithm under Alpha-Stable Noise Condition

Robust adaptive estimation of unknown parameter has been an important issue in recent years for reliable operation in the distributed networks. The conventional adaptive estimation algorithms that rely on mean square error (MSE) criterion exhibit good performance in the presence of Gaussian noise, but their performance drastically decreases under impulsive noise. In this paper, we propose a rob...

متن کامل

Robust state estimation in power systems using pre-filtering measurement data

State estimation is the foundation of any control and decision making in power networks. The first requirement for a secure network is a precise and safe state estimator in order to make decisions based on accurate knowledge of the network status. This paper introduces a new estimator which is able to detect bad data with few calculations without need for repetitions and estimation residual cal...

متن کامل

Presented a method for estimating the cost of software using PCA to reduce the size and with the help of data mining

  These days, data mining one of the most significant issues. One field data mining is a mixture of computer science and statistics which is considerably limited due to increase in digital data and growth of computational power of computer. One of the domains of data mining is the software cost estimation category. In this article, classifying techniques of learning algorithm of machine ...

متن کامل

Bayes, E-Bayes and Robust Bayes Premium Estimation and Prediction under the Squared Log Error Loss Function

In risk analysis based on Bayesian framework, premium calculation requires specification of a prior distribution for the risk parameter in the heterogeneous portfolio. When the prior knowledge is vague, the E-Bayesian and robust Bayesian analysis can be used to handle the uncertainty in specifying the prior distribution by considering a class of priors instead of a single prior. In th...

متن کامل

Robust Optimization Approach for Design for a Dynamic Cell Formation Considering Labor Utilization: Bi-objective Mathematical Model

In this paper, robust optimization of a bi-objective mathematical model in a dynamic cell formation problem considering labor utilization with uncertain data is carried out. The robust approach is used to reduce the effects of fluctuations of the uncertain parameters with regards to all the possible future scenarios. In this research, cost parameters of the cell formation and demand fluctuation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998